An investigation into the effects of pasteurization on the quality of fruit and vegetable juice: A Review
DOI:
https://doi.org/10.61591/jslhu.16.380Keywords:
Thermal pasteurization (TP, High-pressure (HPP), Pulsed electric field (PEF), Ultraviolet light (UV), Ultrasound (US), Fruit and vegetable juicesAbstract
Fruit and vegetable juices which have natural origins, health benefits, safety and long-term preservation are issues that manufacturers and consumers are concerned about. Thermal (TP) and non-thermal pasteurization techniques are applied to inactivate microorganisms and enzymes to ensure the quality of fruit and vegetable juices. Thermal pasteurization method effectively eliminates microorganisms but reduces the content of vitamins and biologically active compounds, changes the natural taste and color of fruit and vegetable juice. Non-thermal sterilization technologies used in fruit and vegetable juice production include high pressure sterilization (HPP), pulsed electric field (PEF), ultraviolet light (UV-C) and ultrasound (US). These methods are carried out at room temperature and with short processing times, thus help to preserve the nutritional components, as well as the color and flavor of the fruit and vegetable juices. The article provides general information about pasteurization methods, advantages and disadvantages of each pasteurization method on the quality of fruit and vegetable juices.
References
Butu, M.; Rodino, S. Fruit and vegetable-based beverages- nutritional properties and health benefits. Natural Beverages, 2019, 303-338.
DOI: https://doi.org/10.1016/B978-0-12-816689-5.00011-0
Khandpur, P.; Gogate, P. R. Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices. Ultrasonics Sonochemistry, 2016, 29, 337-353.
DOI: https://doi.org/10.1016/j.ultsonch.2015.10.008
Anaya-Esparza, L. M.; Velázquez-Estrada, R. M.; Roig, A. X.; García, H. S.; Sayago-Ayerdi, S. G.; et al. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26-37.
DOI: https://doi.org/10.1016/j.tifs.2016.11.020
Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.-P.; Li, H.-B. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int. J. Mol. Sci. 2017, 18, 555.
DOI: https://doi.org/10.3390/ijms18030555
Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 2017, 7 (9), 72.
DOI: https://doi.org/10.3390/agriculture7090072
Sommers, Christopher. “Ultraviolet light-an FDA approved technology,” in Proc. July 31-August 3. International Association of Food Protection Annual Meeting. Wisconsin. p.1, 2011.
Huang, H. W.; Wu, S.J.; Lu, J. K.; et al. Current status and future trends of high-pressure processing in food industry. Food Control, 2017, 72(9), 1-8.
DOI: https://doi.org/10.1016/j.foodcont.2016.07.019
Lopes, R.P.; Mota, M.J.; Delgadillo, I.; Saraiva, J. A. Pasteurization: Effect on Sensory Quality and Nutrient Composition. Encyclopedia of Food and Health: Portugal, 2016, 246-263.
DOI: https://doi.org/10.1016/B978-0-12-384947-2.00524-9
Zhang, Z.; Wang, L.; Zeng, X.; Han, Z.; Brennan, C. Non-thermal technologies and its current and future application in the food industry: a review. Int. J. Food Sci. Technol. 2018, 54 (1), 1-13.
DOI: https://doi.org/10.1111/ijfs.13903
Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Crit. Rev. Food Sci. Nutr. 2017, 57(3), 637-652.
DOI: https://doi.org/10.1080/10408398.2014.914019
Kim, M.K.; Kim, M.Y.; Lee, K.G. Determination of furan levels in commercial orange juice products and its correlation to the sensory and quality characteristics. Food Chem. 2016, 211, 654-660.
DOI: https://doi.org/10.1016/j.foodchem.2016.05.114
Linhares, M.; Alves, F.E.; Silva, L.; et al. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136.
DOI: https://doi.org/10.1016/j.foodres.2020.109506
ThS. Đào Văn Thanh. Ảnh hưởng của phương pháp trích ly và thanh trùng đến hợp chất sinh học của nước giải khát lá ổi (Psidium guyjava L.). Tạp chí Công Thương, 2020, 8.
Zhao, L.; Wang, Y.; Hu, X.; Sun, Z.; Liao, X. Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT-Food Sci. Technol. 2016, 65, 283–289.
DOI: https://doi.org/10.1016/j.lwt.2015.08.011
Nguyễn Thị Thu Hồng, Trần Minh Tuấn và Nguyễn Tấn Hùng. Ảnh hưởng của xử lý enzyme và chế độ thanh trùng đến chất lượng sản phẩm nước ép dưa lưới. Tạp chí Khoa học Trường Đại học Cần Thơ, 2019, 55 (2), 241-249.
DOI: https:// 10.22144/ctu.jsi.2019.067
Cheng, C.; Jia, M.; Gui, Y.; et al. Comparison of the effects of novel processing technologies and conventional thermal pasteurization on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Inno. Food Sci. Emer. Technol. 2020, 64, 1-36.
DOI: https://doi.org/10.1016/j.ifset.2020.102425
Wang, Y.; Ma, Y.; Zhao, X.; et al. Qualities of Watermelon Juice during Shelf-life. International Conference on Biological Sciences and Technology, 2017, 6, 310-315.
DOI: https:// 10.2991/bst-17.2018.49
Wang, Y.; Guo, X.; Ma, Y.; Zhao, X. Effect of ultrahigh temperature treatment on qualities of watermelon juice. Food Sci. Nutr. 2018, 6 (3), 594-601.
DOI: https://doi.org/10.1002/fsn3.593
Wang, Y.; Guo, X.; Ma, Y.; et al. Effect of Thermal Treatments on Quality and Aroma of Watermelon Juice. Food Sci. Nutr. 2018, 6 (3), 594-601.
DOI: https://doi.org/10.1155/2018/9242675
Zvaigzne, G.; Kārkliņa, D.; Moersel, J.; et al. Ultra-high temperature effect on bioactive compounds and sensory attributes of orange juice compared with traditional processing. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 2017, 71 (6), 486-491.
DOI: https://doi.org/10.1515/prolas-2017-0084
Zhao, G.; Zhang, R.; Zhang, M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 2017, 52 (1), 3-12.
DOI: https://doi.org/10.1111/ijfs.13203
Zhao, L.; Wang, Y.; Hu, X.; Sun, Z.; Liao, X. Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT-Food Sci. Technol. 2016, 65, 283–289.
DOI: https://doi.org/10.1016/j.lwt.2015.08.011
Swami, H.N.; Kaushik, N.; Rao, P. Effect of High Pressure Processing on Rheological Properties, Pectinmethylesterase Activity and Microbiological Characteristics of Aloe Vera (Aloe barbadensis Miller) Juice. Int. J. Food Prop. 2016, 18 (7), 1597-1612.
DOI: https://doi.org/10.1080/10942912.2014.923907
Penga, J.; Tangb J.; Barrett, D.; et al. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Critical Reviews in Food Science and Nutrition, 2017, 57 (14), 2970-2995,.
DOI: https://doi.org/10.1080/10408398.2015.1082126
Koutchma, T. Advances in Ultraviolet Light Technology for Non-Thermal Processing of Liquid Foods. Food and Bio. Technol. 2009, 2 (2), 138-155.
Błaszczak, W.; Amarowicz, R.; Górecki, A.R. Antioxidant capacity, phenolic composition and microbial stability of aronia juice subjected to high hydrostatic pressure processing. Innov. Food Sci. Emerg. Technol. 2017, 39, 141-147.
DOI: https://doi.org/10.1016/j.ifset.2016.12.005
Hu, Y.H.; Wang, C.Y.; Chen, B.Y. Effects of high-pressure processing and thermal pasteurization on quality and microbiological safety of jabuticaba (Myrciaria cauliflora) juice during cold storage. J. Food Sci. Technol. 2020, 57, 3334-3344.
Nayak, P.K; Rayaguru, K.; Radha, K. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 2017, 97, 1404-1411.
DOI: https://doi.org/10.1002/jsfa.7878
Vieira, F.N.; Lourenço, S.; Fidalgo, L.G.; et al. Long-term effect on bioactive components and antioxidant activity of thermal and high-pressure pasteurization of orange juice. Molecules, 2018, 23, 2706.
DOI: https://doi.org/10.3390/molecules23102706
Quiroz-González, B.; Rodríguez-Martínez, V.; Welti-Chanes, J., et al. Refrigerated storage of high hydrostatic pressure (HHP) treated pitaya (Stenocereus pruinosus) juice. Rev. Mex. Ing. Quim. 2020, 19, 387-399.
Feng, X.; Zhou, Z.; Wang, X.; Bi, X.; Ma, Y.; Xing, Y. Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend. Foods. 2020, 9, 218.
DOI: https://doi.org/10.3390/foods9020218
Aaby, K.; Grimsbo, I.; Hovda, M.; et al. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115-123.
DOI: https://doi.org/10.1016/j.foodchem.2018.03.100
Daher, D.; Gourrierec, Le, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agricultur, 2017, 7 (9), 1-18.
DOI: https://doi.org/10.3390/agriculture7090072
Pang, D.; You, L.; Li, T.; Zhou, L.; et al. Phenolic profiles andchemical- or cell-based antioxidant activities of four star fruit (Averrhoa carambola) cultivars. RSC Adv, 2016, 6, 90646-90653.
DOI: https://doi.org/10.1039/C6RA15692D
Moussa-Ayoub, TE.; Jager, H.; Knorr, D.; et al. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Sci. Technol, 2017, 79, 354-542.
DOI: https://doi.org/10.1016/j.lwt.2016.10.061
Nayak, P.K; Rayaguru.K.; Krishnan KR. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 97. 2016,1404–1411.
DOI: https://doi.org/10.1002/jsfa.7878
Dahlia Daher, Soléne Le Gourrierec and Concepción Pérez-Lamela. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture. 2017.
DOI: https://doi.org/10.3390/agriculture7090072
Shahbaz, H.M.; Yoo, S.; Seo, B.; Ghafoor, K.; Un Kim, Y.; Lee, D.U.; Park .; J. Combination of TiO2-UVPhotocatalysis and High Hydrostatic Pressure to Inactivate Bacterial Pathogens and Yeast in Commercial Apple Juice. Food. B. Technol. 2016, 9, 182–190.
Yi, J.; Kebede B.T.; Dang DNH.; Buve ́ C.; Grauwet T.; Loey AV; Hu X; Hendrickx M. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Sci Technol. 2017, 75, 85–92.
DOI: https://doi.org/10.1016/j.lwt.2016.08.041
Daher, D.; and C.; Pérez-Lamela. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 2017. 7 (9).
DOI: https://doi.org/10.3390/agriculture7090072
Koutchma T.; Popovic P.; Ros-Polski .; Popielar.A. Effects of Ultraviolet Light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. F. 2018, 15, 844-867.
DOI: https://doi.org/10.1111/1541-4337.12214
Ranjha, M.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules. 2021, 26.
DOI: https://doi.org/10.3390/molecules26164893
Pal, M. Pulsed Electric Field Processing: An Emerging Technology for Food Preservation. J. of E. Food Chem. 2017.
DOI: https://doi.org/10.4172/2472-0542.1000126
Kayalvizhi, V.; et al.; Effect of pulsed electric field (PEF) treatment on sugarcane juice. J. Food Sci. Technol. 2016, 53, 1371-1379.
DOI: https://doi.org/10.1007/s13197-016-2172-5
Leong, S.Y.; D.J.; Burritt and I. Oey. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem. 2016, 196, 833-41.
DOI: https://doi.org/10.1016/j.foodchem.2015.10.025
Rahaman, A.; et al. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. U. Sono. 2019, 58, 104-643.
DOI: https://doi.org/10.1016/j.ultsonch.2019.104643
Dziadek, K.; et al. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J. Food Sci. Technol. 2019, 56, 1184-1191.
DOI: https://doi.org/ 10.1007/s13197-019-03581-4
Lee, H.; et al. Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis.A. Sci. 2020, 11.
DOI: https://doi.org/10.3390/app11010186
García Carrillo, M.; M. Ferrario.; S. Guerrero. Study of the inactivation of some microorganisms in turbid carrot-orange juice blend processed by ultraviolet light assisted by mild heat treatment. J. Food Engin. 2017, 212, 213-225.
DOI: https://doi.org/10.1016/j.jfoodeng.2017.06.005
Abdul Karim Shah, N.; et al. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages. 2016, 2.
DOI: https://doi.org/10.3390/beverages2030022
Fenoglio, D.; et al. UV-C light inactivation of single and composite microbial populations in tangerine-orange juice
blend. Evaluation of some physicochemical parameters. Food and Bio Proce. 2019, 117, 149-159.
DOI: https://doi.org/10.1016/j.fbp.2019.07.005
Antonio-Gutiérrez; et al. Characterization and effectiveness of short-wave ultraviolet irradiation reactors operating in continuous recirculation mode to inactivate Saccharomyces cerevisiae in grape juice. J. Food Engin. 2019, 241, 88-96.
DOI: https://doi.org/10.1016/j.jfoodeng.2018.08.011
Biancaniello, M.; Popovi ́c, V.; Fernandez-Avila, C.; Ros-Polski, V.; Koutchma, T. Feasibility of a Novel Industrial-Scale Treatment of Green Cold-Pressed Juices by UV-C Light Exposure. Beverages. 2018, 4, 29.
DOI: https://doi.org/10.3390/beverages4020029
Manzoor, M.F.; et al. Novel processing techniques and spinach juice: Quality and safety improvements. J. Food Sci. 2020. 1018-1026.
DOI: https://doi.org/10.1111/1750-3841.15107
Bhat, R. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemi . 2016, 213, 635-640.
DOI: https://doi.org/10.1016/j.foodchem.2016.06.096
Koutchma, T.; Popovic ́, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844-867.
DOI: https://doi.org/10.1111/1541-4337.12214
Biancaniello, M.; et al. Feasibility of a Novel Industrial-Scale Treatment of Green Cold-Pressed Juices by UV-C Light Exposure. Beverages. 2018, 4.
DOI: https://doi.org/10.3390/beverages4020029
Ferrario, M.; et al. Development and quality assessment of a turbid carrot-orange juice blend processed by UV-C light assisted by mild heat and addition of Yerba Mate (Ilex paraguariensis) extract. Food Chem. 2018, 269, 567-576.
DOI: https://doi.org/10.1016/j.foodchem.2018.06.149
Carranza, H.P.; et al. Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages. Food Sci. Technol Int. 2016, 22, 536-46.
DOI: https://doi.org/10.1177/1082013216631646
Guerrero-Beltrán, J.A.; C.E. Ochoa-Velasco. Ultraviolet-C Light Technology and Systems for Preservation of Fruit Juices and Beverages. Inno. Food Proce. Technol. 2021, 210-226.
DOI: https://doi.org/10.1016/B978-0-08-100596-5.22937-5
Tatiana Koutchma, Vladimir .P.; Valquiria.P.; Anthony.P. Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Compr. Rev. Food Sci. Food Saf. 2016, 154-4337.
DOI: https://doi.org/10.1111/1541-4337.12214
Cruz-Cansino Ndel, S.; et al. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Braz .J. Microbiol. 2016, 47, 431-7.
DOI: https://doi.org/10.1016/j.bjm.2016.01.014
Basumatary, B.; et al. dứa. Inter. J. F. Scien. 2020, 20, S2056-S2073.
Pokhrel, P.R.; et al. Combined Effect of Ultrasound and Mild Temperatures on the Inactivation of E. coli in Fresh Carrot Juice and Changes on its Physicochemical Characteristics. J Food Sci. 2017, 82, 2343-2350.
DOI: https://doi.org/10.1111/1750-3841.13787
Wang, J.; et al. Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrasonics Sonochemistry, 2020, 64, 105000.
DOI: https://doi.org/10.1016/j.ultsonch.2020.105000
Buniowska, M.; et al. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chem. 2017, 221, 1834-1842.
DOI: https://doi.org/10.1016/j.foodchem.2016.10.093
Zdui, Y. and A.J. Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Sci. and Technol. 2016.
DOI: https://doi.org/ 10.1590/1678-457X.0061
Tremarin, A.; T.R.S. Brandao.; and C.L.M. Silva. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. Lwt. 2017, 78, 138-142.
DOI: https://doi.org/10.1016/j.lwt.2016.12.039
Rạeev. B.; Kok Ming.; B. Sonication treatment convalesce the overall quality of hand-pressed strawberry juice, 2016, 470-476.
DOI: https://doi.org/10.1016/j.foodchem.2016.07.160
Saeeduddin, M.; et al. Physicochemical parameters, bioactive compounds and microbial quality of sonicated pear juice. Inter. J. Food Scien & Technol. 2016, 51 (7), 1552-1559.
DOI: https://doi.org/ 10.1111/ijfs.13124
Rojas, M.L.; A.C.Miano.; P.E.D. Augusto. Ultrasound Processing of Fruit and Vegetable Juices, in Ultrasound: Advances for Food Processing and Preservation. 2017, 181-199.
DOI: https://doi.org/10.1016/B978-0-12-804581-7.00007-5
Campoli, S.S.; et al. Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chem. 2018, 268, 594-601.