Tìm hiểu ảnh hưởng của phương pháp thanh trùng đến chất lượng nước rau quả: A Review
PDF

Từ khóa

Thanh trùng (TP)
Áp suất cao (HPP)
xung điện trường (PEF)
tia cực tím (UV)
Sóng siêu âm (US)
Nước quả

Cách trích dẫn

Lê Thị Thu Hương, Nguyễn Thị Tâm, & Đào Thị Thu Hiền. (2024). Tìm hiểu ảnh hưởng của phương pháp thanh trùng đến chất lượng nước rau quả: A Review. Tạp Chí Khoa học Lạc Hồng, 2(16), 97–104. https://doi.org/10.61591/jslhu.16.380

Tóm tắt

Nước rau quả có nguồn gốc từ tự nhiên, có lợi cho sức khoẻ, đảm bảo an toàn và bảo quản được trong thời gian dài là vấn đề mà các nhà sản xuất và người tiêu dùng quan tâm. Các kỹ thuật thanh trùng dùng nhiệt (TP) và không dùng nhiệt được áp dụng để bất hoạt vi sinh vật và enzyme nhằm đảm bảo chất lượng nước rau quả. Phương pháp thanh trùng nhiệt giúp loại bỏ vi sinh vật hiệu quả nhưng làm giảm hàm lượng vitamin, các hợp chất có hoạt tính sinh học, thay đổi mùi vị và màu sắc tự nhiên của nước rau quả. Công nghệ khử trùng không dùng nhiệt được sử dụng trong sản xuất nước rau quả gồm có khử trùng áp suất cao (HPP), điện trường xung (PEF), tia cực tím (UV-C) và sóng siêu âm (US). Các phương pháp này tiến hành ở nhiệt độ thường và thời gian xử lý ngắn, do đó bảo tồn được các thành phần dinh dưỡng, cũng như màu sắc và mùi vị của nước rau quả. Bài báo cung cấp thông tin tổng thể về các phương pháp thanh trùng, ưu nhược điểm của từng phương pháp thanh trùng đến chất lượng của nước rau quả.

https://doi.org/10.61591/jslhu.16.380
PDF

Tài liệu tham khảo

Butu, M.; Rodino, S. Fruit and vegetable-based beverages- nutritional properties and health benefits. Natural Beverages, 2019, 303-338.

DOI: https://doi.org/10.1016/B978-0-12-816689-5.00011-0

Khandpur, P.; Gogate, P. R. Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices. Ultrasonics Sonochemistry, 2016, 29, 337-353.

DOI: https://doi.org/10.1016/j.ultsonch.2015.10.008

Anaya-Esparza, L. M.; Velázquez-Estrada, R. M.; Roig, A. X.; García, H. S.; Sayago-Ayerdi, S. G.; et al. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26-37.

DOI: https://doi.org/10.1016/j.tifs.2016.11.020

Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.-P.; Li, H.-B. Effects and mechanisms of fruit and vegetable juices on cardiovascular diseases. Int. J. Mol. Sci. 2017, 18, 555.

DOI: https://doi.org/10.3390/ijms18030555

Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 2017, 7 (9), 72.

DOI: https://doi.org/10.3390/agriculture7090072

Sommers, Christopher. “Ultraviolet light-an FDA approved technology,” in Proc. July 31-August 3. International Association of Food Protection Annual Meeting. Wisconsin. p.1, 2011.

Huang, H. W.; Wu, S.J.; Lu, J. K.; et al. Current status and future trends of high-pressure processing in food industry. Food Control, 2017, 72(9), 1-8.

DOI: https://doi.org/10.1016/j.foodcont.2016.07.019

Lopes, R.P.; Mota, M.J.; Delgadillo, I.; Saraiva, J. A. Pasteurization: Effect on Sensory Quality and Nutrient Composition. Encyclopedia of Food and Health: Portugal, 2016, 246-263.

DOI: https://doi.org/10.1016/B978-0-12-384947-2.00524-9

Zhang, Z.; Wang, L.; Zeng, X.; Han, Z.; Brennan, C. Non-thermal technologies and its current and future application in the food industry: a review. Int. J. Food Sci. Technol. 2018, 54 (1), 1-13.

DOI: https://doi.org/10.1111/ijfs.13903

Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Crit. Rev. Food Sci. Nutr. 2017, 57(3), 637-652.

DOI: https://doi.org/10.1080/10408398.2014.914019

Kim, M.K.; Kim, M.Y.; Lee, K.G. Determination of furan levels in commercial orange juice products and its correlation to the sensory and quality characteristics. Food Chem. 2016, 211, 654-660.

DOI: https://doi.org/10.1016/j.foodchem.2016.05.114

Linhares, M.; Alves, F.E.; Silva, L.; et al. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136.

DOI: https://doi.org/10.1016/j.foodres.2020.109506

ThS. Đào Văn Thanh. Ảnh hưởng của phương pháp trích ly và thanh trùng đến hợp chất sinh học của nước giải khát lá ổi (Psidium guyjava L.). Tạp chí Công Thương, 2020, 8.

Zhao, L.; Wang, Y.; Hu, X.; Sun, Z.; Liao, X. Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT-Food Sci. Technol. 2016, 65, 283–289.

DOI: https://doi.org/10.1016/j.lwt.2015.08.011

Nguyễn Thị Thu Hồng, Trần Minh Tuấn và Nguyễn Tấn Hùng. Ảnh hưởng của xử lý enzyme và chế độ thanh trùng đến chất lượng sản phẩm nước ép dưa lưới. Tạp chí Khoa học Trường Đại học Cần Thơ, 2019, 55 (2), 241-249.

DOI: https:// 10.22144/ctu.jsi.2019.067

Cheng, C.; Jia, M.; Gui, Y.; et al. Comparison of the effects of novel processing technologies and conventional thermal pasteurization on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Inno. Food Sci. Emer. Technol. 2020, 64, 1-36.

DOI: https://doi.org/10.1016/j.ifset.2020.102425

Wang, Y.; Ma, Y.; Zhao, X.; et al. Qualities of Watermelon Juice during Shelf-life. International Conference on Biological Sciences and Technology, 2017, 6, 310-315.

DOI: https:// 10.2991/bst-17.2018.49

Wang, Y.; Guo, X.; Ma, Y.; Zhao, X. Effect of ultrahigh temperature treatment on qualities of watermelon juice. Food Sci. Nutr. 2018, 6 (3), 594-601.

DOI: https://doi.org/10.1002/fsn3.593

Wang, Y.; Guo, X.; Ma, Y.; et al. Effect of Thermal Treatments on Quality and Aroma of Watermelon Juice. Food Sci. Nutr. 2018, 6 (3), 594-601.

DOI: https://doi.org/10.1155/2018/9242675

Zvaigzne, G.; Kārkliņa, D.; Moersel, J.; et al. Ultra-high temperature effect on bioactive compounds and sensory attributes of orange juice compared with traditional processing. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 2017, 71 (6), 486-491.

DOI: https://doi.org/10.1515/prolas-2017-0084

Zhao, G.; Zhang, R.; Zhang, M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 2017, 52 (1), 3-12.

DOI: https://doi.org/10.1111/ijfs.13203

Zhao, L.; Wang, Y.; Hu, X.; Sun, Z.; Liao, X. Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT-Food Sci. Technol. 2016, 65, 283–289.

DOI: https://doi.org/10.1016/j.lwt.2015.08.011

Swami, H.N.; Kaushik, N.; Rao, P. Effect of High Pressure Processing on Rheological Properties, Pectinmethylesterase Activity and Microbiological Characteristics of Aloe Vera (Aloe barbadensis Miller) Juice. Int. J. Food Prop. 2016, 18 (7), 1597-1612.

DOI: https://doi.org/10.1080/10942912.2014.923907

Penga, J.; Tangb J.; Barrett, D.; et al. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Critical Reviews in Food Science and Nutrition, 2017, 57 (14), 2970-2995,.

DOI: https://doi.org/10.1080/10408398.2015.1082126

Koutchma, T. Advances in Ultraviolet Light Technology for Non-Thermal Processing of Liquid Foods. Food and Bio. Technol. 2009, 2 (2), 138-155.

Błaszczak, W.; Amarowicz, R.; Górecki, A.R. Antioxidant capacity, phenolic composition and microbial stability of aronia juice subjected to high hydrostatic pressure processing. Innov. Food Sci. Emerg. Technol. 2017, 39, 141-147.

DOI: https://doi.org/10.1016/j.ifset.2016.12.005

Hu, Y.H.; Wang, C.Y.; Chen, B.Y. Effects of high-pressure processing and thermal pasteurization on quality and microbiological safety of jabuticaba (Myrciaria cauliflora) juice during cold storage. J. Food Sci. Technol. 2020, 57, 3334-3344.

Nayak, P.K; Rayaguru, K.; Radha, K. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 2017, 97, 1404-1411.

DOI: https://doi.org/10.1002/jsfa.7878

Vieira, F.N.; Lourenço, S.; Fidalgo, L.G.; et al. Long-term effect on bioactive components and antioxidant activity of thermal and high-pressure pasteurization of orange juice. Molecules, 2018, 23, 2706.

DOI: https://doi.org/10.3390/molecules23102706

Quiroz-González, B.; Rodríguez-Martínez, V.; Welti-Chanes, J., et al. Refrigerated storage of high hydrostatic pressure (HHP) treated pitaya (Stenocereus pruinosus) juice. Rev. Mex. Ing. Quim. 2020, 19, 387-399.

Feng, X.; Zhou, Z.; Wang, X.; Bi, X.; Ma, Y.; Xing, Y. Comparison of high hydrostatic pressure, ultrasound, and heat treatments on the quality of strawberry-apple-lemon juice blend. Foods. 2020, 9, 218.

DOI: https://doi.org/10.3390/foods9020218

Aaby, K.; Grimsbo, I.; Hovda, M.; et al. Effect of high pressure and thermal processing on shelf life and quality of strawberry purée and juice. Food Chem. 2018, 260, 115-123.

DOI: https://doi.org/10.1016/j.foodchem.2018.03.100

Daher, D.; Gourrierec, Le, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agricultur, 2017, 7 (9), 1-18.

DOI: https://doi.org/10.3390/agriculture7090072

Pang, D.; You, L.; Li, T.; Zhou, L.; et al. Phenolic profiles andchemical- or cell-based antioxidant activities of four star fruit (Averrhoa carambola) cultivars. RSC Adv, 2016, 6, 90646-90653.

DOI: https://doi.org/10.1039/C6RA15692D

Moussa-Ayoub, TE.; Jager, H.; Knorr, D.; et al. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Sci. Technol, 2017, 79, 354-542.

DOI: https://doi.org/10.1016/j.lwt.2016.10.061

Nayak, P.K; Rayaguru.K.; Krishnan KR. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 97. 2016,1404–1411.

DOI: https://doi.org/10.1002/jsfa.7878

Dahlia Daher, Soléne Le Gourrierec and Concepción Pérez-Lamela. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture. 2017.

DOI: https://doi.org/10.3390/agriculture7090072

Shahbaz, H.M.; Yoo, S.; Seo, B.; Ghafoor, K.; Un Kim, Y.; Lee, D.U.; Park .; J. Combination of TiO2-UVPhotocatalysis and High Hydrostatic Pressure to Inactivate Bacterial Pathogens and Yeast in Commercial Apple Juice. Food. B. Technol. 2016, 9, 182–190.

Yi, J.; Kebede B.T.; Dang DNH.; Buve ́ C.; Grauwet T.; Loey AV; Hu X; Hendrickx M. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT-Food Sci Technol. 2017, 75, 85–92.

DOI: https://doi.org/10.1016/j.lwt.2016.08.041

Daher, D.; and C.; Pérez-Lamela. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture, 2017. 7 (9).

DOI: https://doi.org/10.3390/agriculture7090072

Koutchma T.; Popovic P.; Ros-Polski .; Popielar.A. Effects of Ultraviolet Light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. F. 2018, 15, 844-867.

DOI: https://doi.org/10.1111/1541-4337.12214

Ranjha, M.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules. 2021, 26.

DOI: https://doi.org/10.3390/molecules26164893

Pal, M. Pulsed Electric Field Processing: An Emerging Technology for Food Preservation. J. of E. Food Chem. 2017.

DOI: https://doi.org/10.4172/2472-0542.1000126

Kayalvizhi, V.; et al.; Effect of pulsed electric field (PEF) treatment on sugarcane juice. J. Food Sci. Technol. 2016, 53, 1371-1379.

DOI: https://doi.org/10.1007/s13197-016-2172-5

Leong, S.Y.; D.J.; Burritt and I. Oey. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem. 2016, 196, 833-41.

DOI: https://doi.org/10.1016/j.foodchem.2015.10.025

Rahaman, A.; et al. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. U. Sono. 2019, 58, 104-643.

DOI: https://doi.org/10.1016/j.ultsonch.2019.104643

Dziadek, K.; et al. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J. Food Sci. Technol. 2019, 56, 1184-1191.

DOI: https://doi.org/ 10.1007/s13197-019-03581-4

Lee, H.; et al. Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis.A. Sci. 2020, 11.

DOI: https://doi.org/10.3390/app11010186

García Carrillo, M.; M. Ferrario.; S. Guerrero. Study of the inactivation of some microorganisms in turbid carrot-orange juice blend processed by ultraviolet light assisted by mild heat treatment. J. Food Engin. 2017, 212, 213-225.

DOI: https://doi.org/10.1016/j.jfoodeng.2017.06.005

Abdul Karim Shah, N.; et al. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages. 2016, 2.

DOI: https://doi.org/10.3390/beverages2030022

Fenoglio, D.; et al. UV-C light inactivation of single and composite microbial populations in tangerine-orange juice

blend. Evaluation of some physicochemical parameters. Food and Bio Proce. 2019, 117, 149-159.

DOI: https://doi.org/10.1016/j.fbp.2019.07.005

Antonio-Gutiérrez; et al. Characterization and effectiveness of short-wave ultraviolet irradiation reactors operating in continuous recirculation mode to inactivate Saccharomyces cerevisiae in grape juice. J. Food Engin. 2019, 241, 88-96.

DOI: https://doi.org/10.1016/j.jfoodeng.2018.08.011

Biancaniello, M.; Popovi ́c, V.; Fernandez-Avila, C.; Ros-Polski, V.; Koutchma, T. Feasibility of a Novel Industrial-Scale Treatment of Green Cold-Pressed Juices by UV-C Light Exposure. Beverages. 2018, 4, 29.

DOI: https://doi.org/10.3390/beverages4020029

Manzoor, M.F.; et al. Novel processing techniques and spinach juice: Quality and safety improvements. J. Food Sci. 2020. 1018-1026.

DOI: https://doi.org/10.1111/1750-3841.15107

Bhat, R. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemi . 2016, 213, 635-640.

DOI: https://doi.org/10.1016/j.foodchem.2016.06.096

Koutchma, T.; Popovic ́, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844-867.

DOI: https://doi.org/10.1111/1541-4337.12214

Biancaniello, M.; et al. Feasibility of a Novel Industrial-Scale Treatment of Green Cold-Pressed Juices by UV-C Light Exposure. Beverages. 2018, 4.

DOI: https://doi.org/10.3390/beverages4020029

Ferrario, M.; et al. Development and quality assessment of a turbid carrot-orange juice blend processed by UV-C light assisted by mild heat and addition of Yerba Mate (Ilex paraguariensis) extract. Food Chem. 2018, 269, 567-576.

DOI: https://doi.org/10.1016/j.foodchem.2018.06.149

Carranza, H.P.; et al. Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages. Food Sci. Technol Int. 2016, 22, 536-46.

DOI: https://doi.org/10.1177/1082013216631646

Guerrero-Beltrán, J.A.; C.E. Ochoa-Velasco. Ultraviolet-C Light Technology and Systems for Preservation of Fruit Juices and Beverages. Inno. Food Proce. Technol. 2021, 210-226.

DOI: https://doi.org/10.1016/B978-0-08-100596-5.22937-5

Tatiana Koutchma, Vladimir .P.; Valquiria.P.; Anthony.P. Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Compr. Rev. Food Sci. Food Saf. 2016, 154-4337.

DOI: https://doi.org/10.1111/1541-4337.12214

Cruz-Cansino Ndel, S.; et al. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Braz .J. Microbiol. 2016, 47, 431-7.

DOI: https://doi.org/10.1016/j.bjm.2016.01.014

Basumatary, B.; et al. dứa. Inter. J. F. Scien. 2020, 20, S2056-S2073.

Pokhrel, P.R.; et al. Combined Effect of Ultrasound and Mild Temperatures on the Inactivation of E. coli in Fresh Carrot Juice and Changes on its Physicochemical Characteristics. J Food Sci. 2017, 82, 2343-2350.

DOI: https://doi.org/10.1111/1750-3841.13787

Wang, J.; et al. Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrasonics Sonochemistry, 2020, 64, 105000.

DOI: https://doi.org/10.1016/j.ultsonch.2020.105000

Buniowska, M.; et al. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chem. 2017, 221, 1834-1842.

DOI: https://doi.org/10.1016/j.foodchem.2016.10.093

Zdui, Y. and A.J. Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Sci. and Technol. 2016.

DOI: https://doi.org/ 10.1590/1678-457X.0061

Tremarin, A.; T.R.S. Brandao.; and C.L.M. Silva. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. Lwt. 2017, 78, 138-142.

DOI: https://doi.org/10.1016/j.lwt.2016.12.039

Rạeev. B.; Kok Ming.; B. Sonication treatment convalesce the overall quality of hand-pressed strawberry juice, 2016, 470-476.

DOI: https://doi.org/10.1016/j.foodchem.2016.07.160

Saeeduddin, M.; et al. Physicochemical parameters, bioactive compounds and microbial quality of sonicated pear juice. Inter. J. Food Scien & Technol. 2016, 51 (7), 1552-1559.

DOI: https://doi.org/ 10.1111/ijfs.13124

Rojas, M.L.; A.C.Miano.; P.E.D. Augusto. Ultrasound Processing of Fruit and Vegetable Juices, in Ultrasound: Advances for Food Processing and Preservation. 2017, 181-199.

DOI: https://doi.org/10.1016/B978-0-12-804581-7.00007-5

Campoli, S.S.; et al. Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chem. 2018, 268, 594-601.

DOI: https://doi.org/10.1016/j.foodchem.2018.06.127