VI SINH VẬT PHÂN GIẢI CELLULOSE TRONG ĐƯỜNG TIÊU HÓA HƯƠU CAO CỔ (Giraffa camelopardalis)

Các tác giả

  • Trần Thị Thảo Hiền js.lhu.edu.vn

DOI:

https://doi.org/10.61591/jslhu.14.642

Từ khóa:

Vi sinh vật, Cellulose

Tóm tắt

Hươu cao cổ (HCC, Giraffa camelopardalis) là loài động vật nhai lại với nguồn thức ăn chính là thực vật. Đường tiêu hóa của HCC chứa hệ vi sinh vật cộng sinh rất phong phú. Hệ này hoạt động rất hiệu quả để phân hủy cơ chất cellulose từ thức ăn thành glucose và tạo ra nguồn năng lượng cho các hoạt động của HCC. Hệ vi sinh vật trong đường tiêu hóa của HCC khác nhau giữa các cá thể. Thành phần thức ăn mà HCC tiêu thụ cũng ảnh hưởng đến sự đa dạng và số lượng của các loài vi sinh vật trong hệ tiêu hóa. Bài tổng quan này sẽ khái quát về hệ tiêu hóa của HCC và đồng thời cung cấp thêm các kết quả nghiên cứu mới về hệ vi sinh vật trong đường tiêu hóa của HCC có khả năng phân giải cellulose cũng như một số cơ chế chuyển hóa chúng. Ngoài ra, việc phân lập và định danh được các vi sinh vật có khả năng phân giải cellulose có trong đường tiêu hóa của HCC sẽ góp phần đa dạng hóa nguồn cung vi sinh vật phân giải cellulose. Những nguồn này cũng có thể được khai thác để phục vụ cho việc xử lý rác thải và các phế phụ phẩm có chứa thành phần cellulose.

Tài liệu tham khảo

Clauss, M.; Lechner-Doll, M. Differences in Selective Reticulo-ruminal Particle Retention as a Key Factor in Ruminant Diversification. Oecologia. 2001, 129 (3), 321–327.

Saengkerdsub, S.; Ricke, S. C. Ecology and Characteristics of Methanogenic Archaea in Animals and Humans. Crit. Rev. Microbiol. 2013, 40 (2), 97–116.

Ley, R. E.; Hamady, M.; Lozupone, C.; Turnbaugh, P. J.; Ramey, R. R.; Bircher, J. S.; Tucker T. A.; Schlegel M. L.; Schrenzel M. D.; Knight R.; Gordon, J. I. Evolution of Mammals and Their Gut Microbes. Science. 2008, 320 (5883), 1647-1651.

Ley, R. E.; Lozupone, C. A.; Hamady, M.; Knight, R.; Gordon, J. I. Worlds Within Worlds: Evolution of The Vertebrate Gut Microbiota. Nat. Rev. Microbiol. 2008, 6 (10), 776–788.

O’ Donnell, M. M.; Harris, H. M.; Jeffery, I. B.; Claesson, M. J.; Younge, B.; O'Toole, P. W.; Ross, R. P. The Core Faecal Bacterial Microbiome of Irish Thoroughbred Racehorses. Lett. Appl. Microbiol. 2013, 57 (6), 492–501.

Liu, X.; Fan, H.; Ding, X.; Hong, Z., Nei, Y.; Liu, Z.; Li, G.; Guo, H. Analysis of The Gut Microbiota by Highthroughput Sequencing of the V5-V6 Regions of The 16S rRNA Gene in Donkey. Curr. Microbiol. 2014, 68 (5), 657–662.

Hall-Martin, A. J. Giraffe Weight Estimation Using Dissected Leg Weight and Body Measurements. J. Wildl. Manag. 1977, 41, 740–745.

Leuthold, B. M.; Leuthold, W. Food Habits of Giraffe in Tsavo National Park, Kenya. Afr. J. Ecol. 1972, 10 (2), 129–141.

Kingdon, J. The Kingdon Field Guide to African Mammals (First edition), Christopher A. Helm, C. Black, Publishers Ltd., London. 2003.

Shipley, L.; Blomquist, S.; Danell, K. Diet Choices Made by Free-Ranging Moose in Northern Sweden in Relation to Plant Distribution, Chemistry, and Morphology. Can. J. Zool. 1998, 76 (9), 1722–1733.

Hume, I; Warner, A. Evolution of Microbial Digestion in Mammals, in Digestive Physiology and Metabolism in Ruminants. Oecologia. 1980, 78: 665–684.

Hackmann, T.; Spain, J. Invited Review – Ruminant Ecology and Evolution: Perspectives Useful to Ruminant Livestock Research and Production. J. Dairy Sci. 2010, 93 (4), 1320–1334.

Chen, X.; Whang, J. K.; Wu, Y. M.; Liu, J. X. Effects of Chemical Treatments of Rice Straw on Rumen Fermentation Characteristics, Fibrolytic Enzyme Activities and Populations of Liquid- and Solid-Associated Ruminal Microbes in vitro. Anim. Feed Sci. Technol. 2008, 141 (1-2), 1–14.

Carnegie, A. B.; Tulloh, N. M.; R. M. Developmental Growth and Body Weight Loss of Cattle. V. Changes in the Alimentary Tract. Aust. J. Agric. Res. 1969, 20 (2), 405–415.

Aziz, N. N.; Murray D. M.; Ball, R. O. The Effect of Live Weight Gain and Live Weight Loss on Body Composition of Merino Wethers: Noncarcass Organs. J. Anim. Sci. 1993, 71 (2), 400–407.

Demment, M. W.; van Soest, P. J. A Nutritional Explanation for Body-Size Patterns of Ruminant and Non-Ruminant Herbivores. Am. Nat. 1985, 125 (5), 641–672.

Pellew, R. A. The Feeding Ecology of A Selective Browser, The Giraffe (Giraffa camelopardalis tippelskirchi). J. Zool. 1984, 202 (1), 57–81.

du Toit, J. T.; Yetman, C. A. Effects of Body Size on the Diurnal Activity Budgets of African Browsing Ruminants. Oecologia. 2005, 143 (2), 317–325.

Sauer, C.; Bertelsen, M. F.; Lund, P.; Weisbjerg, M. R.; Clauss; M. Quantitative Macroscopic Anatomy of the Giraffe (Giraffa camelopardalis) Digestive Tract. Anat. Histol. Embryol. 2015, 45(5), 338–349.

Péréz, W.; Lima, M.; Clauss, M. Gross Anatomy of The Intestine in the Giraffe (Giraffa camelopardalis). Anat. Histol. Embryol. 2009, 38 (6), 432–435.

Wilson, D. B. Three Microbial Strategies for Plant Cell Wall Degradation. Ann. N. Y. Acad. Sci. 2008, 1125 (1), 289-297.

Salem, A. Z. M.; Elghandour, M. M. Y.; Kholif, A. E.; Odongo, N. E.; Jimenez, F. J. P.; Montes-de-Oca, R.; Domínguez, I. A.; Dibarrata, J. A. The Effect of Feeding Horses a High Fiber Diet With or Without Exogenous Fibrolytic Enzymes Supplementation on Nutrient Digestion, Blood Chemistry, Fecal Coliform Count, and in vitro Fecal Fermentation. J. Equine Vet. Sci. 2015, 35 (9), 735-743.

Koike, S.; Pan, J.; Kobayashi, Y.; Tanaka, K. Kinetics of In Sacco Fiber-Attachment of Representative Ruminal Cellulolytic Bacteria Monitored by Competitive PCR. J. Dairy Sci. 2003, 86 (4), 1429-1435.

Dashtban, M.; Maki, M.; Leung, K. T.; Mao, C.; Qin, W. Cellulase Activities in Biomass Conversion: Measurement Methods and Comparison. Crit. Rev. Biotechnol. 2010, 30 (4) 302-309.

Zhang, X. -Z.; Zhang, Y.-H. P. Cellulases: Characteristics, Sources, Production, and Applications. In: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. Shang-Tian Yang, Hesham A. El-Enshasy, Nuttha Thongchul. John Wiley & Sons, Inc. Published. 2013, 131-146.

Horn, S. J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V. G. Novel Enzymes for The Degradation of Cellulose. Biotechnol Biofuels. 2012, 5 (1), 1-13.

Wilson, D. B. Microbial Diversity of Cellulose Hydrolysis. Curr. Opin. Microbiol. 2011, 14 (3), 259-263.

Wang, Y.; McAllister, T. Rumen Microbes, Enzymes and Feed Digestion - A Review. Asian-Aust. J. Anim. Sci. 2002, 15 (11), 1659-1676.

de Souza, B. Microbial Degradation of Lignocellulosic Biomass. In: Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization. Chandel, A. K; da Vilsa, S. S. InTech Published. 2013, Chapter 9, 207-247.

Malherbe, S.; Cloete, T. E. Lignocellulose Biodegradation: Fundamentals and Applications. Rev. Environ. Sci. Biotechnol. 2002, 1 (2), 105-114.

Msimango, N. N. P.; Fon, F. N. Monitoring the Fibrolytic Potential of Microbial Ecosystems from Domestic and Wild Ruminants Browsing Tanniferous Forages. Anim. Nutr. 2016, 2 (1), 40-44.

Gemeda, B. S.; Hassen, A. Effect of Tannin and Species Variation on in vitro Digestibility, Gas, and Methane Production of Tropical Browse Plants. Asian-Aust. J. Anim. 2015, 28 (2), 188-199.

Hyde, E. R.; Navas-Molina, J. A.; Song, S. J.; Kueneman, J. G.; Ackermann, G.; Cardona, C.; Humphrey, G.; Boyer, D.; Weaver, T.; Mendelson III, J. R.; McKenzie V. J.; Gilbert J. A.; Knight, R. The Oral and Skin Microbiomes of Captive Komodo Dragons are Significantly Shared With Their Habitat. mSystems. 2016, 1 (4), 00046-16.

Roggenbuck, M.; Sauer, C.; Poulsen, M.; Bertelsen, M. F.; Sørensen, S. J. The Giraffe (Giraffa camelopardalis) Rumen Microbiome. FEMS Microbiol. Ecol. 2014, 90 (1), 237-246.

Caporaso, J. G.; Lauber, C. L.; Costello, E. K.; Berg-Lyons, D.; Gonzalez, A.; Stombaugh, J.; Knights, D.; Gajer, P.; Ravel, J.; Fierer, N.; Gordon, J. I.; Knight, R. Moving Pictures of The Human Microbiome. Genome. Biol. 2011, 12 (5), 1-8.

McKenzie,V. J.; Song, S. J.; Delsuc, F.; Prest, T. L.; Oliverio, A. M.; Korpita, T. M.; Alexiev, A.; Amato, K. R.; Metcalf, J. L.; Kowalewski, M.; Avenant, N. L.; Link, A.; Fiore, A. D.; Seguin-Orlando, A.; Feh, C.; Orlando, L.; Mendelson, J. R.; Sanders, J.; Knight, R. The Effects of Captivity on the Mammalian Gut Microbiome. Integr. Comp. Biol. 2017, 57 (4), 690–704.

Bushman, F. D.; Lewis, J. D.; Wu, G. D. Diet, Gut Enterotypes and Health: Is There a Link? Nestle Nutr. Inst. Workshop Ser. 2013, 77: 65-73.

Morotomi, M.; Nagai, F.; Sakon, H.; Tanaka, R. Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., Isolated from Human Faeces. Int. J. Syst. Evol. 2008, 58 (12), 2716-2720.

Wang, J.; Wang, Y.; Ding, Y.; Suljid, J.; Wang, W. Oral and Pulmonary Necrobacillosis in a Juvenile Reticulated Giraffe. J. Vet. Diagn. Invest. 2021, 33 (2), 345–347.

Vacca, M.; Celan, G.; Calabrese, F. M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms. 2020, 8 (4), 573.

Rosenberg, E.; DeLong, E. F.; Lory, S.; Stackebrandt, E.; Thompson, F. The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, Springer Berlin Heidelberg Publisher. 2014.

Flint, H. J.; Duncan, S. H.; Louis P. Gut Microbial Ecology. In: Designing Functional Foods. McClements, D. J.; Decker, E. A. Woodhead Publishers. 2009, 38-67.

Iino, T.; Mori, K.; Tanaka, K.; Suzuki, K.; Harayama, S. Oscillibacter valericigenes gen. nov., sp. nov., a Valerate-Producing Anaerobic Bacterium Isolated from the Alimentary Canal of a Japanese Corbicula Clam. Int. J. Syst. Evol. 2007, 57 (8), 1840–1845.

Ozbayram, E. G.; Akyol, Ç. A. Ğ. R. I.; Ince, B.; Karakoç, C.; Ince, O. (2018). Rumen Bacteria at Work: Bioaugmentation Strategies to Enhance Biogas Production from Cow Manure. J. Appl. Microbiol. 2018, 124 (2), 491-502.

Van Gylswyk, N. O.; Hippe, H.; Rainey, F. A. Pseudobutyrivibrio ruminis gen. nov., sp. nov., a Butyrate-Producing Bacterium from the Rumen That Closely Resembles Butyrivibrio fibrisolvens in Phenotype. Int. J. Syst. Evol. 1996, 46 (2), 559-563

Berg Miller, M. E.; Antonopoulos, D. A.; Rincon, M. T.; Band, M.; Bari, A.; Akraiko T.; Hernandez, A.; Thimmapuram, J.; Henrissat, B.; Coutinho, P. M.; Borovok, I.; Jindou, S.; Lamed, R.; Flint, H. J.; Bayer, E. A.; White, B. A. Diversity and Strain Specificity of Plant Cell Wall Degrading Enzymes Revealed by the Draft Genome of Ruminococcus flavefaciens FD-1. PLoS One. 2009, 4 (8), 0006650.

Ze, X.; Duncan, S. H.; Louis, P.; Flint, H. J. Ruminococcus bromii is a Keystone Species for the Degradation of Resistant Starch in the Human Colon. ISME J. 2012, 6 (8), 1535–1543.

Van Gylswyk, N. O. Succiniclasticum ruminis gen. nov., sp. nov., a Ruminal Bacterium Converting Succinate to Propionate as the Sole Energy-Yielding Mechanism. Int. J. Syst. Evol. 1995, 45 (2), 297-300.

Hackmann, T.; Spain, J. Invited review – Ruminant Ecology and Evolution: Perspectives Useful to Ruminant Livestock Research and Production. J. Dairy Sci. 2010, 93 (4),1320-1334.

Roggenbuck, M.; Sauer, C.; Poulsen, M.; Bertelsen, M. F.; Sørensen, S. J. The Giraffe (Giraffa camelopardalis) Rumen Microbiome. FEMS Microbiol. Ecol. 2014, 90 (1), 237-246

Fernando, S. C.; Purvis, H. T.; Najar, F. Z.; Sukharnikov, L. O.; Krehbiel, C. R.; Nagaraja, T. G.; Roe, B. A.; Desilva, U. Rumen Microbial Population Dynamics During Adaptation to a High-Grain Diet. Appl. Environ. Microbiol. 2010, 76 (22), 7482–7490.

Brulc, J. M.; Antonopoulos, D. A.; Miller, M. E. B.; Wilson, M. K.; Yannarella, A. C.; Dinsdale, E. A.; Edwards, R. E.; Frank, E. D.; Emersoni J. B.; Wacklini, P.; Coutinho, P. M.; Henrissat, B.; Nelsoni, K. E.; White, B. A. Gene-Centric Metagenomics of the Fiber-Adherent Bovine Rumen Microbiome Reveals Forage Specific Glycoside Hydrolases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (6), 1948–1953.

Xi, L.; Song, Y.; Qin, X.; Han, J.; Chang, Y. F. Microbiome Analysis Reveals the Dynamic Alternations in Gut Microbiota of Diarrheal Giraffa camelopardalis. Front. Vet. Sci. 2021, 8.

Võ, T. V. S.; Đỗ, H. C. T.; Hồ, Đ. Q.; Trần, D. N. Phân Lập, Tuyển Chọn và Định Danh Vi Khuẩn Dạ Cỏ Của Bò Để Phân Giải Bột Bã Mía Trong Điều Kiện in vitro. Tạp chí Khoa học Trường Đại học Cần Thơ. 2017, 48 (B), 71-80.

Ngô, P. T; Nguyễn, V. C. T; Nguyễn, D. H. T.; Bùi, V. T. Xác Định Khả Năng Phân Giải cellulose Của Các Chủng Vi Khuẩn, Nấm Phân Lập Từ Ruột Mối (Microcerotermes spp.) Thu Nhận ở Huyện Bình Tân, Tỉnh Vĩnh Long. Tạp chí Khoa học Trường Đại học Cần Thơ. 2021, 57 (4A), 65-72.

Nguyễn, T. N. T. Phân Lập, Tuyển Chọn và Định Danh Vi Khuẩn Phân Giải Xenlulo Từ Cành Thanh Long. Viện khoa học nông nghiệp Việt Nam. Hội thảo Quốc gia về Khoa học Cây trồng lần thứ hai. 2016, 972-982.

Jayasekara, S.; Ratnayake, R. Microbial cellulases: an overview and applications. Cellulose. 2019,

Tải xuống

Đã Xuất bản

10-12-2024

Cách trích dẫn

Trần Thị Thảo Hiền. (2024). VI SINH VẬT PHÂN GIẢI CELLULOSE TRONG ĐƯỜNG TIÊU HÓA HƯƠU CAO CỔ (Giraffa camelopardalis). Tạp Chí Khoa học Lạc Hồng, 7(14), 1–6. https://doi.org/10.61591/jslhu.14.642